
COP 4610L: PHP – Part 2 Page 1 Mark Llewellyn ©

COP 4610L: Applications in the Enterprise
Fall 2006

Introduction to PHP – Part 2

COP 4610L: Applications in the Enterprise
Fall 2006

Introduction to PHP – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
ENG3 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop4610/fall2006

COP 4610L: PHP – Part 2 Page 2 Mark Llewellyn ©

Checking Your PHP Set-up
• Once you get your web server (Apache) and PHP installed,

the simplest way to test your installation is to create a PHP
file and execute it.

• Create a PHP file containing the following single line:

<?php phpinfo() ?>

• Save this file in the htdocs folder in Apache (there will
already be some files in this folder).

• Start the Apache server running and then access the PHP file
through the browser with the following url:

http://localhost:8081/info.php

COP 4610L: PHP – Part 2 Page 3 Mark Llewellyn ©

Execution
should produce
a long list of
items that
begins similar
to the one
shown.

COP 4610L: PHP – Part 2 Page 4 Mark Llewellyn ©

Verifying a Username and Password Using PHP
• It is often the case that a private website is created which is

accessible only to certain individuals.

• Implementing privacy generally involves username and
password verification.

• In the next example, we’ll see an XHTML form that queries
a user for a username and password. The fields
USERNAME and PASSWORD are posted to the PHP script
verify.php for verification.

– For simplicity, data is not encrypted before sending it to the server.

– For more information on PHP encryption functions visit:
http://www.php.net/manual/en/ref.mcrypt.php.

COP 4610L: PHP – Part 2 Page 5 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- password.html -->
<!-- XHTML form sent to password.php for verification -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head>

<title>Verifying a username and a password.</title>
<style type = "text/css">

td { background-color: #DDDDDD }
</style>

</head>
<body style = "font-family: arial">

<p style = "font-size: 18pt">
 Welcome to the COP 4610 High Security WebPage <HR>
<p style = "font-size: 13pt">

Type in your username and password below.

<span style = "color: #0000FF; font-size: 10pt;

font-weight: bold">
Note that password will be sent as plain text - encryption not used in this application

</p>

password.html – page 1

COP 4610L: PHP – Part 2 Page 6 Mark Llewellyn ©

<!-- post form data to password.php -->
<form action = "password.php" method = "post">

<table border = "3" cellspacing = "3" style = "height: 90px; width: 150px;
font-size: 10pt" cellpadding = "1">
<tr>

<td colspan = "3"> Username: </td>
</tr>
<tr>

<td colspan = "3"> <input size = "40" name = "USERNAME"
style = "height: 22px; width: 115px" /> </td>

</tr>
<tr>

<td colspan = "3"> Password: </td>
</tr>
<tr>

<td colspan = "3"> <input size = "40" name = "PASSWORD"
style = "height: 22px; width: 115px" type = "password" />
</td>

</tr>
<tr>

<td colspan = "1">
<input type = "submit" name = "Enter" value = "Enter" style = "height: 23px;

width: 47px" /> </td>
<td colspan = "2"> <input type = "submit" name = "NewUser" value = "New User"

style = "height: 23px" />
</td>

</tr>
</table> </form> <HR> </body> </html>

password.html – page 2

COP 4610L: PHP – Part 2 Page 7 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- password.php -->
<!-- Searching a database for usernames and passwords. -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head>

<?php
extract($_POST);
// check if user has left USERNAME or PASSWORD field blank
if (!$USERNAME || !$PASSWORD) {

fieldsBlank();
die();

}
// check if the New User button was clicked
if (isset($NewUser)) {

// open password.txt for writing using append mode
if (!($file = fopen("password.txt", "a"))) {

// print error message and terminate script
// execution if file cannot be opened
print("<title>Error</title></head><body>

Could not open password file
</body></html>");

die();
}

password.php – page 1

COP 4610L: PHP – Part 2 Page 8 Mark Llewellyn ©

// write username and password to file and call function userAdded
fputs($file, "$USERNAME,$PASSWORD\n");
userAdded($USERNAME);

}
else {

// if a new user is not being added, open file
// for reading
if (!($file = fopen("password.txt", "r"))) {

print("<title>Error</title></head>
<body>Could not open password file
</body></html>");

die();
}

$userVerified = 0;

// read each line in file and check username and password
while (!feof($file) && !$userVerified) {

// read line from file
$line = fgets($file, 255);

// remove newline character from end of line
$line = chop($line);

// split username and password using comma delimited string
$field = split(",", $line, 2);

password.php – page 2

COP 4610L: PHP – Part 2 Page 9 Mark Llewellyn ©

// verify username
if ($USERNAME == $field[0]) {

$userVerified = 1;

// call function checkPassword to verify user’s password
if (checkPassword($PASSWORD, $field) == true)

accessGranted($USERNAME);
else

wrongPassword();
}

}

// close text file
fclose($file);

// call function accessDenied if username has not been verified
if (!$userVerified)

accessDenied();
}

// verify user password and return a boolean
function checkPassword($userpassword, $filedata)
{

if ($userpassword == $filedata[1])
return true;

else
return false;

}

password.php – page 3

COP 4610L: PHP – Part 2 Page 10 Mark Llewellyn ©

// print a message indicating the user has been added
function userAdded($name) {

print("<title>Thank You</title></head>
<body style = \"font-family: arial;
font-size: 1em; color: blue\">
You have been added
to the user list, $name. Please remember your password.

Enjoy the site.");

}

// print a message indicating permission has been granted
function accessGranted($name) {

print("<title>Thank You</title></head>
<body style = \"font-family: arial;
font-size: 1em; color: blue\">
Permission has been
granted, $name.

Enjoy the site.");

}
// print a message indicating password is invalid
function wrongPassword() {

print("<title>Access Denied</title></head>
<body style = \"font-family: arial;
font-size: 1em; color: red\">
You entered an invalid
password.
Access has
been denied.");

}

password.php – page 4

COP 4610L: PHP – Part 2 Page 11 Mark Llewellyn ©

// print a message indicating access has been denied
function accessDenied() {

print("<title>Access Denied</title></head>
<body style = \"font-family: arial;
font-size: 1em; color: red\">

You were denied access to this server.

");

}

// print a message indicating that fields
// have been left blank
function fieldsBlank() {

print("<title>Access Denied</title></head>
<body style = \"font-family: arial;
font-size: 1em; color: red\">

Please fill in all form fields.

");

}
?>

</body>
</html>

password.php – page 5

COP 4610L: PHP – Part 2 Page 12 Mark Llewellyn ©

Execution of
password.html. Client-
side XHTML form.
User clicks on New
User button to enter
their information.

Execution of
password.php to
enter a new user.

COP 4610L: PHP – Part 2 Page 13 Mark Llewellyn ©

Execution of
password.php to
invalidate an
attempted entry by a
user.

Execution of
password.html. Client-
side XHTML form. User
clicks on Enter button to
submit and verify their
information.

COP 4610L: PHP – Part 2 Page 14 Mark Llewellyn ©

How password.php Works
• The PHP script password.php verifies the client’s username

and password by querying a database. For this example, the
“database” of usernames and passwords is just a text file (for
simplicity). Existing users are validated against this file, and
new users are appended to it.

• Whether we are dealing with a new
user is determined by calling function
isset to test if variable $NewUser
has been set.

• When the user submits the password.html form to the server,
they click either Enter or New User button. After calling
function extract, either variable $NewUser or $Enter is
created depending on which button was selected. If
$NewUser has not been set, we assume the user clicked Enter.

The password.txt “database”

COP 4610L: PHP – Part 2 Page 15 Mark Llewellyn ©

PHP and Database Connectivity
• PHP offers built-in support for a wide variety of database

systems from Unix DBM through relational systems such as
MySQL to full size commercial systems like Oracle.

• We’ll continue to use MySQL as the underlying database
system so that you can easily compare the work we’ve done
with MySQL using Java servlets and JSPs.

• Before you go any further in these notes you must configure
PHP to access MySQL databases. Beginning with PHP 5,
MySQL is not enabled by default in PHP, nor is the MySQL
library bundled with PHP.

– Versions of MySQL greater than 4.1.0 use MySQLi extensions.

– Versions of MySQL less than 4.1.0 use MySQL extensions.

COP 4610L: PHP – Part 2 Page 16 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

• You need to do two things to get PHP to recognize MySQL:

1. Set the Path statement to include C:/php (you should have
already done this!) This enables the runtime environment to
access the libmysql.dll and/or libmysqli.dll files
in the PHP directory.

2. Edit the php.ini file to enable the extension
php_mysql.dll (and/or extension php_mysqli.dll).
To accomplish this search down through this file until you
find the extensions (probably about ½ of the way through the
file). They are all currently commented out (each line begins
with a ;), simply remove the semicolon in from of the correct
extension names. Be sure to rename the file php.ini if
you haven’t already done so. (See next page for example.)

COP 4610L: PHP – Part 2 Page 17 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

This file was originally extended
with either INI-DIST or INI-
RECOMMENDED extensions.

After editing, be sure to rename
it “php.ini”.

This is the MySQL library that
both mysql and mysqli
extensions require.

COP 4610L: PHP – Part 2 Page 18 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

These are the MySQL
extension files that will be
used to link PHP to MySQL.

The extension files you need
are located in the PHP/ext
directory.

COP 4610L: PHP – Part 2 Page 19 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

These two extensions are no
longer commented out. At
loadtime, these extensions will now
be included in the PHP
environment, provided that the file
php.ini is set..

Note: The php_mysqli.dll
extension may not appear in this
list in your php.ini file. If this is the
case, simply add this line. The
mysql.dll extension should already
be included.

COP 4610L: PHP – Part 2 Page 20 Mark Llewellyn ©

Once you get PHP configured for
MySQL you can verify that the
php.ini file was properly read and
the MySQL extensions are loaded
by running the info.php script and
looking for these entries.

COP 4610L: PHP – Part 2 Page 21 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

• PHP contains a fairly extensive set of commands that can be
used to access and manipulate MySQL databases.

• A very brief listing of some of these commands appears on
the next page.

• For a complete listing see:

http://us2.php.net/manual/en/print/ref.mysql.php.

http://us2.php.net/manual/en/print/ref.mysqli.php.

COP 4610L: PHP – Part 2 Page 22 Mark Llewellyn ©

Portion of mysql.dll Extension

COP 4610L: PHP – Part 2 Page 23 Mark Llewellyn ©

Portion of mysqli.dll Extension

COP 4610L: PHP – Part 2 Page 24 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

• Now that you have PHP set to accept MySQL extensions,
let’s connect to the bike database that we used for examples
with Java servlets and JSPs.

• The following example is a simple database connection
process in PHP where the client interacts with the database
from an XHTML form that simply asks them to select which
attributes from the bikes table that they would like to display.
This is done through the data.html file.

• When the client clicks the submit query button, the
database.php script executes by connecting to the
database, posting the query, retrieving the results, and
displaying them to the client.

COP 4610L: PHP – Part 2 Page 25 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- data.html -->
<!-- Querying a MySQL Database From a PHP Script -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Sample Database Query From PHP</title> </head>
<body style = "background-color: #545454" background=image1.jpg >

<h2 style = "font-family: arial color: blue"> Querying a MySQL database from a PHP Script. </h2>
<form method = "post" action = "database.php">

<p>Select a field to display:
<!-- add a select box containing options for SELECT query -->
<select name = "select">

<option selected = "selected">*</option>
<option>bikename</option>
<option>size</option>
<option>color</option>
<option>cost</option>
<option>purchased</option>
<option>mileage</option>

</select>
</p>
<input type = "submit" value = "Send Query" style = "background-color: blue;

color: yellow; font-weight: bold" />
</form>

</body> </html>

data.html

Client side

COP 4610L: PHP – Part 2 Page 26 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- database.php -->
<!-- Program to query a database and send results to the client. -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Database Search Results</title> </head>

<body style = "font-family: arial, sans-serif"
style = "background-color: #4A766E" background=image1.jpg link=blue vlink=blue>
<?php

extract($_POST);

// build SELECT query
$query = "SELECT " . $select . " FROM bikes";

// Connect to MySQL
if (!($database = mysqli_connect("localhost",

"root", "root“, bikedb)))
die("Could not connect to database");

database.php

Server side
Page 1

Connect to MySQL database.
URL, username, password, and
database all specified.

Default query is to select the attributes chosen by
the client for use in a SELECT query.

COP 4610L: PHP – Part 2 Page 27 Mark Llewellyn ©

// query bikedb database
if (!($result = mysql_query($database, $query))) {

print("Could not execute query!
");
die(mysql_error());

}
?>

<h3 style = "color: blue">
Database Search Results</h3>
<table border = "1" cellpadding = "3" cellspacing = "3"

style = "background-color: #00FFFF"> <!-- ADD8E6 -->

<?php
// fetch meta-data
$metadata = mysqli_fetch_fields($result);
print("<tr>");
for ($i=0; $i<count($metadata); $i++){

print("<td>");
printf("%s",$metadata[$i]->name);
print("</td>");

}
print("</tr>");

database.php

Server side
Page 2

Get metadata for
the query

Display metadata in the
top row of the table

COP 4610L: PHP – Part 2 Page 28 Mark Llewellyn ©

// fetch each record in result set
for ($counter = 0;

$row = mysql_fetch_row($result);
$counter++){
// build table to display results
print("<tr>");
foreach ($row as $key => $value)

print("<td>$value</td>");
print("</tr>");

}
mysql_close($database);

?>
</table>

Your search yielded

<?php print("$counter") ?> results.

<h5>Please email comments to

markl@cs.ucf.edu

</h5>
</body></html>

database.php

Server side
Page 3

COP 4610L: PHP – Part 2 Page 29 Mark Llewellyn ©

Execution of data.html – Client side

Execution of data.html (client side of
the application) showing the drop-
down menu for the client to select the
attributes for the query.

When the selection is made and the
Send Query button is clicked the
results on the following page will be
displayed.

COP 4610L: PHP – Part 2 Page 30 Mark Llewellyn ©

Execution of database.php – Server side

Results of query SELECT *
FROM bikes. Display
indicates that 10 rows were
included in the result.

COP 4610L: PHP – Part 2 Page 31 Mark Llewellyn ©

Cookies
• A cookie is a text file that a Web site stores on a client’s

computer to maintain information about the client during and
between browsing sessions.

• A Web site can store a cookie on a client’s computer to
record user preferences and other information that the Web
site can retrieve during the client’s subsequent visits. For
example, many Web sites use cookies to store client’s
zipcodes. The Web site can retrieve the zipcode from the
cookie and provide weather reports and news updates
tailored to the user’s region.

• Web sites also use cookies to track information about client
activity. Analysis of information collected via cookies can
reveal the popularity of Web sites or products.

COP 4610L: PHP – Part 2 Page 32 Mark Llewellyn ©

Cookies (cont.)

• Marketers use cookies to determine the effectiveness of
advertising campaigns.

• Web sites store cookies on users’ hard drives, which raises
issues regarding security and privacy. Web sites should not
store critical information, such as credit-card numbers or
passwords, in cookies, because cookies are just text files that
anyone can read.

• Several cookie features address security and privacy
concerns. A server can access only the cookies that it has
placed on the client.

• A cookies has an expiration date, after which the Web
browser deletes it.

COP 4610L: PHP – Part 2 Page 33 Mark Llewellyn ©

Cookies (cont.)

• Users who are concerned about the privacy and security
implications of cookies can disable them in their Web
browsers. However, the disabling of cookies can make it
impossible for the user to interact with Web sites that rely on
cookies to function properly.

• Information stored in the cookie is sent to the Web server
from which it originated whenever the user requests a Web
page from that particular server. The Web server can send
the client XHTML output that reflects the preferences or
information that is stored in the cookie.

• The location of the cookie file varies from browser to
browser. Internet Explorer places cookies in the Cookies
directory located at C:\Documents and Settings\...\Cookies

COP 4610L: PHP – Part 2 Page 34 Mark Llewellyn ©

Cookies (cont.)

• After a cookie is created, a text file is added to this directory.
While the name of the file will vary from user to user a
typical example is shown below.

• The contents of a cookie are shown on page 43.

COP 4610L: PHP – Part 2 Page 35 Mark Llewellyn ©

Cookies (cont.)

• Now let’s create the code necessary to create our own cookie.

• In this example, a PHP script is invoked from a client-side
HTML document. The HTML document creates a form for the
user to enter the information that will be stored in the cookie.
(Often the information that is stored in a cookie will be
extracted from several different areas and may involved
tracking the client’s actions at the Web site.)

• Once the user has entered their information, when they click the
Write Cookie button, the cookies.php script executes.

• The XHTML document and the PHP script are shown on the
next pages. The XHTML document cookies.html is on
page 36 and the PHP script cookies.php appears on page
37.

COP 4610L: PHP – Part 2 Page 36 Mark Llewellyn ©

cookies.html – page 1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- cookies.html -->
<!-- Writing a Cookie -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Writing a cookie to the client computer</title> </head>

<body style = "font-family: arial, sans-serif;
background-color: #856363" background=image1.jpg>
<h2>Click Write Cookie to save your cookie data.</h2>

<form method = "post" action = "cookies.php" style = "font-size: 10pt"
background-color: #856363">

Name:

<input type = "text" name = "NAME" />

Height:

<input type = "text" name = "HEIGHT" />

Favorite Color:

<input type = "text" name = "COLOR" />

<p>

<input type = "submit" value = "Write Cookie" style = "background-color: #0000FF;
color: yellow; font-weight: bold" /></p>

</form>
</body> </html>

COP 4610L: PHP – Part 2 Page 37 Mark Llewellyn ©

cookies.php – page 1
<?php

// cookies.php
// Program to write a cookie to a client's machine
extract($_POST);

// write each form field’s value to a cookie and set the
// cookie’s expiration date
setcookie("Name", $NAME, time() + 60 * 60 * 24 * 5);
setcookie("Height", $HEIGHT, time() + 60 * 60 * 24 * 5);
setcookie("Color", $COLOR, time() + 60 * 60 * 24 * 5);

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Cookie Saved</title> </head>
<body style = "font-family: arial, sans-serif", background=image1.jpg>

<p>The cookie has been set with the following data:</p>
<!-- print each form field’s value -->

Name:

<?php print($NAME) ?>

Height:

<?php print($HEIGHT) ?>

Favorite Color:
<span style = "color: <?php print("$COLOR\">$COLOR") ?>

<p>Click here to read the saved cookie.</p>

</body> </html>

Function setcookie sets the cookies
to the values passed from the
cookies.html form. Function
setcookie prints XHTML header
information and therefore it needs to
be called before any other XHTML
(including comments) is printed.

The third argument to
setcookie is optional and
indicates the expiration date
of the cookie. In this case it is
set to expire 5 days from the
current time. Function time
returns the current time and
then we add to this the
number of seconds after
which the cookie is to expire.

COP 4610L: PHP – Part 2 Page 38 Mark Llewellyn ©

Cookies (cont.)

HTML form
generated by
cookies.html

COP 4610L: PHP – Part 2 Page 39 Mark Llewellyn ©

Cookies (cont.)

Output from
cookies.php script
showing the values
in the newly created
cookie.

COP 4610L: PHP – Part 2 Page 40 Mark Llewellyn ©

Cookies (cont.)

• Once the cookie has been created, the cookies.php script gives
the user the chance to view the newly created cookie by
invoking the readCookies.php script from within the
cookies.php script by clicking on the link.

• The readCookies.php script code is illustrated on the next page
followed by the output from the execution of this PHP script.

COP 4610L: PHP – Part 2 Page 41 Mark Llewellyn ©

readCookies.php – page 1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- readCookies.php -->
<!-- Program to read cookies from the client's computer -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head><title>Read Cookies</title></head>

<body style = "font-family: arial, sans-serif" background=image1.jpg>
<p>

 The following data is saved in a cookie on your computer.

</p>
<table border = "5" cellspacing = "0" cellpadding = "10">

<?php
// iterate through array $_COOKIE and print
// name and value of each cookie
foreach ($_COOKIE as $key => $value)

print("<tr>
<td bgcolor=\"#F0E68C\">$key</td>
<td bgcolor=\"#FFA500\">$value</td>
</tr>");

?>
</table>

</body> </html>

Superglobal array
holding cookie.

COP 4610L: PHP – Part 2 Page 42 Mark Llewellyn ©

Cookies (cont.)

Output from the
readCookies.php
script.

COP 4610L: PHP – Part 2 Page 43 Mark Llewellyn ©

Cookies (cont.)

Contents of the
cookie stored
on the client
machine.

COP 4610L: PHP – Part 2 Page 44 Mark Llewellyn ©

Cookies (cont.)

Actual text file holding cookie data for the
cookie that was created in this example.

